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Abstract

Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in

optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and

describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means

including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time

domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is

discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by

convolving the contact forces with pre-calculated Green’s functions. The smaller-length scales are included by using

constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is

presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on

detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are

solved with the Newton–Raphson iterative scheme. Relations between force, indentation, and contact stiffness are

calculated for a single tread block in contact with a road surface. The calculated results have the same character as results

from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-

scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the

whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to

include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a

suitable input for a global tyre/road interaction model that is also based on the presented contact formulation.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There is a steady increase of the road traffic volume. The average annual growth rates in the European
Union between 1995 and 2004 have been 1.9% for passenger transport (passenger-kilometres) and 2.8% for
freight transport (tonne-kilometres) [1]. Noise generation, rolling resistance, wear, and grip are all determined
by the interaction process between the automotive vehicle tyre and the road. The first three attributes affect
directly the environment.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Tyre/road noise is dominating at speeds above 40 km/h for passenger cars and above 70 km/h for lorries [2].
Road traffic noise causes physical and mental health effects, sleep disturbance, and annoyance [3]. As an
example, about 70% of the EU population is exposed to road traffic noise with Leq;24 h (A-weighted equivalent
sound pressure level during 24 h) exceeding 55 dBA [4], where a level below 55 dBA is the long term goal for
an acceptable sound environment [5].

Rolling resistance is related to energy consumption of the vehicle, which in turn is related to the exhaust gas
emissions, such as CO2, from the engine. Calculations based on the New European Driving Cycle indicates
that a 33% decrease in rolling resistance gives about 10% decrease in fuel consumption for middle-class
passenger cars [6]. Wear of the tyre and road surfaces will cause emissions of particles into the environment
and limit the technical lifetime of both structures. The effect on the environment is under debate, but during its
life a tyre loses about 10% of its total mass and 30–50% of the tread mass; hundred thousands of tonnes of
tyre and road aggregate are lost each year around the world. This attribute is directly linked to the stresses,
strains, and slippage in the tyre/road interface. Traction and breaking performance, which is of outermost
importance for safety, is also given by the properties at the very interface.

There is an interest in a deepened understanding of the physics of the interaction. A step in this direction is
to closely investigate the influence of the wide range of the length-scales in the tyre/road contact. Tyre/road
interaction and noise models have traditionally neglected the smaller length scales and their influence on the
interaction behaviour. However, as will be demonstrated in this work through numerical simulations, the
smaller length scales have a substantial influence on, for instance, the apparent contact stiffness.

In the following an approach for incorporating length-scales smaller than element size chosen for
discretisation of the contact problem is presented. The concept of an interfacial layer, sometimes referred to as
a third body approach, between the mating objects is used. The main criticism to the approach is that it is
generally hard to determine the properties of the interfacial layer in a unique way. Nevertheless, an interfacial
layer is, if correctly incorporated, definitely a better approximation of the physical reality, than the traditional
approach stating either no contact or full contact at each pairs of contact elements.

This paper presents first an overview of tyre/road interaction and existing tyre/road contact models. Then it
presents details of how to efficiently model tyre/road interaction in the time domain in general and how to
include an interfacial layer. A method to determine unique constitutive relations in the interfacial layer
determined from detailed scans of surface geometry is suggested. Calculated results are finally presented for
tread blocks in contact with a road surface from which general conclusions are made.

1.1. Tyre/road interaction

The interaction problem between the tyre and road in rolling conditions is a challenging problem. Its
complexity is due to
�
 the large dimensions of the contact (10–20 cm) relative to the important wavelengths on the tyre structure,

�
 the time-varying size of the contact area giving a nonlinear contact,

�
 the wide range of length-scales in the contact geometry causing nonlinear contact stiffness,

�
 the presence of friction and adhesion forces at the interface leading to stick-slip and stick-snap processes,

respectively, and

�
 the frequency-, temperature-, and strain-dependent material properties of the tyre structure.

The large dimension of the contact is handled by using a spatial discretisation of the contact geometry and a
multi-point contact model. The time-varying size of the contact requires that the contact formulation is made
in the time domain. The wide range of length-scales is treated in the present paper while the stick-slip and
stick-snap behaviour and its modelling is planed to be presented in other publications. Pre-calculated
receptance Green’s functions of the tyre structure serve as input to the contact model presented in the
following. Basically any linear model that includes the deformation of the tread layer and provides results up
to at least 3 kHz would suit directly into this contact formulation (e.g. models based on the elastic field
equations [7] or waveguide finite element models [8,9]). Models based on linear theory for the interacting
bodies and a nonlinear contact formulation have shown to perform well: (i) calculated velocities of material
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points following the rotating tyre compared with measured data using accelerometres in grooves of a tyre
rolling on a test drum [10] and (ii) the vibrations of the tyre result in radiated noise, where calculated and
measured sound pressure levels of pass-by noise have a good agreement as long as the surface has relatively
rough texture [11].

1.2. Tyre/road interaction models

This section gives an overview of models considering the nonlinear contact between the tyre and road.
Linear contact models are not treated (i.e. models formulated in the frequency domain and the issue of contact
filters).

Two main methods are generally used to numerically solve nonlinear contact problems based on spatial
discretisation: the method of Lagrange multipliers and the penalty method. The contact problem may be
formulated such that the motion is constrained by inequalities: a condition on the magnitude of the contact
force, a geometrical no-penetration condition at the matching points, and a condition of zero contact force
when the matching points are separated. Then the method of Lagrange multipliers yields a mathematical
formulation and a solution where the conditions are exactly fulfilled. An alternative is to use the penalty
method, where stiff penalty springs are added between each pair of matching points. The solution is
approximate since penetration occurs and the penetration depth is influenced by the stiffness of the penalty
springs. The penalty method is the most widely used method because only the displacement variables enter the
equation system. In the Lagrange multiplier method, in addition, the contact forces are present in the system
of equations.

Notice that even though the use of Lagrange multipliers yields an exact solution of the formulated problem,
the boundary conditions in the method are unrealistic when stating either no contact or full contact at each
element. The small length-scale roughness always gives a smoother transition with partial contact in practical
applications. The area of real contact, and hence the contact stiffness, increase with load, and there is a
nonlinear apparent stiffness between the elements in contact. In a way, the lower apparent stiffness is partly
and very approximately reflected by the linear penalty springs in the penalty method. Hence, even though the
penalty method yields an approximate solution of the idealised contact problem, the penalty springs includes a
somewhat more realistic boundary condition compared with the method of Lagrange multipliers.

Tyres have historically been modelled by beam, ring, and plate models or finite element models with shell
elements neglecting deformations of the outermost surface of the tread, only considering displacements and
rotations of the neutral line/layer of the structure; the deformation of the tread cap layer relative to the neutral
layer is not included and wave propagation in the tread is neglected in these tyre models. The tread has instead
been included in the contact models by using a Winkler bedding [12–15] (a layer of uncoupled springs) or an
elastic half-space [10]. The Winkler bedding is identical to the standard penalty method except for a
considerably lower spring stiffness related to the physical stiffness of the tread. The approximation of no
coupling between the springs, which neglects the coupling of the displacements within the tread, is a drawback.
The use of elastic half-spaces is a standard approach for (quasi-) static problems in contact mechanics and is
preferably solved with an iterative active set strategy [16]. The use of a half-space considers the coupling
between points on the half-space, but it is purely elastic without inertia or losses and reacts directly everywhere
for any applied load; i.e. the wave speed is infinite in the half-space, which often makes it unsuitable for
dynamic problems. It is generally hard to find the single-valued stiffness of the bedding springs or elastic half-
space from information about the frequency-dependent Young’s modulus and loss factor of the tread
material; the spring stiffness or Young’s modulus in the models have been updated until correct static
deformation is found [13,17].

Later tyre models include the tread layer and give the response of the outermost surface of the tyre (e.g.
[7–9,18]), and the Winkler bedding or elastic half-space approaches become redundant in their role of
modelling the tread layer. The contact between a tyre including the tread and the road surface can be solved
with aid of the method of Lagrange multipliers; e.g. the tyre/road contact model implemented by Larsson [19].
However, the modelling approach gives generally a contact that is so stiff that contact resonances are easily
encountered on smoother surfaces. The reason is that the roughness within the elements is neglected and the
idealised geometry has the result that the matching points in a pair are either not in contact or in full contact;
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there are no states in between. Hence, the contact stiffness will be that of the bulk of the tyre structure. As
stated before, in reality the roughness of the surface gives a smooth increase in the area of real contact for
increasing load, and the partial contact within the element gives a lower apparent contact stiffness at each pair
of elements.

Even though it is not commented upon in the literature, it must be that the small-scale roughness was partly
and approximately included in the previous contact models through the model updating of the stiffness of the
Winkler bedding springs or the elastic half-space; the stiffness of the springs or half-space is always chosen
lower than the one given by the bulk stiffness of the tread.

1.3. Discretisation of contact geometry

The first step in a numerical model of the contact problem is to make a spatial discretisation of the contact
geometry. The geometry of the road surface is commonly represented in a three-dimensional coordinate
system ðxi; yi; ziðxi; yiÞÞ or along a profile ðxi; ziðxiÞÞ, and is measured with a laser device or a profile meter. The
coordinates xi and yi are in the plane of the road surface and zi is the height of the surface normal to this
reference plane, while i is a index ranging over all discrete points where coordinates are given. There is
generally a trade-off between scanned area or profile length and resolution. Typically, a resolution down to the
micrometre length-scale is only available over areas of some centimetres or decimetres squared (Fig. 1), while
profiles corresponding to several revolutions of the tyre have a resolution on the order of millimetres.

It is not feasible to use the detailed surface geometry directly in contact models due to the vast number of
samples leading to a very high computational cost. The surfaces are instead divided into larger discrete
elements and the geometry is represented with one height or several heights for each contact element while the
details on shorter lengths are neglected (Fig. 2). A re-sampling technique must be employed if the resolution of
the geometry data is different from the spatial discretisation, e.g. using the mean or maximum height within
the element, or a low-pass filtering and re-sampling.

The discretisation gives an approximation of the geometry that neglects the roughness on length-scales
smaller than the dimensions of the element; see how the geometry within the element is lost in Figs. 1 and 2.
Road surfaces have roughness on a wide range of length-scales all the way down to the micro- and nano-metre
length-scales. Methods must be employed to include the small-scale roughness within the elements after the
discretisation is made.

1.4. Nonlinear constitutive contact relations

A general way to include roughness within elements in a contact model is to use constitutive contact
equations for force/pressure–displacement relations within the element area. A constitutive equation can be
formulated as a relation between the normal apparent pressure, pm, and the distance between the surfaces, dm,
at element m,

pm ¼ f ðdmÞ or dm ¼ hðpmÞ. (1)
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Fig. 1. (a) Detailed scan of road surface geometry and (b) a sampled version of the same geometry. Distances in mm.
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Fig. 2. The geometry of a profile zðxÞ (solid line) is divided into elements (element m and mþ 1 is between the vertical dashed lines) and the

matching points is represented with heights zm and zmþ1 (dots).

Fig. 3. Contact force versus distance between the matching points. Formulation with (a) Lagrange multipliers and with (b) an interfacial

law.
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The functions f ð�Þ and hð�Þ may be determined either from models based on a statistical description of the
surface geometry, curve-fitting to measured data, or from numerical contact models based on spatial
discretisation with fine resolution. The relations may alternatively be given in terms of the total force acting
over the element, F m, and the distance between the matching points, dm, by assuming a uniformly distributed
apparent pressure over the element with area Am,

F m ¼ Amf ðdmÞ or dm ¼ hðF m=AmÞ. (2)

These interfacial laws give a smoother contact relation compared to the standard method of Lagrange
multipliers (Fig. 3).

The behaviour of contact between rough surfaces may be described by various models based on different
approaches. E.g. a model consisting of a statistical model of the surface geometry and a mechanical model of
the contact at individual junctions [20], power laws based on experimental investigations [21], or statistical
surface models [22]. A third-body approach with a continuum layer with nonlinear stiffness added between the
bodies in contact was used in Ref. [23]. Generally, the models have several parameters that have to be
determined by model updating, either from statistical data of the surface geometry or directly from
experimental investigations of the contact problem at hand. The method presented in this paper, on the other
hand, uses directly detailed scans of the geometry to find the interfacial laws and they are given individually
for each pair of contact elements.

The relations within the elements are commonly assumed to be independent of the states at the other
elements, in order to obtain a contact model that is sufficiently fast. Note that the elements are still coupled
through the bulk of the body. A nonlinear uncoupled spring between each pair of contact elements is the
physical equivalent of a local constitutive equation. Most presented interfacial laws describe in fact the
behaviour of a nonlinear spring. The assumption of no inertia may be justified as the modelled surface layer is
very thin and exhibits mainly a spring character. Coupling between the springs of adjacent elements can be
neglected as an approximation, since the rough surface makes a discontinuous contact, and hence the coupling
occurs mainly through the bulk.
2. Contact model

The contact model proposed is presented first for a single pair of contact elements for simplicity, and is
thereafter extended to its discrete version and to multiple contact elements. Further, the model is only
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presented for non-rotation objects, but the extension to consider a rotating tyre is straightforward; the road
geometry are made rotating around the tyre using a reference frame fixed to the tyre.

The contact approach can generally be applied to contact between other objects than tyre and road, but it
must be high-lighted that the dynamic response of a tyre have benefits due to the relatively low stiffness of the
soft tread and the high-energy dissipation in the structure. Problems with instability in the contact algorithm
may arise if structures with low-energy dissipation are considered. This problem can often be treated by an
increase of the sampling frequency and length of the Green functions used in the algorithm—in theory but not
always in practice due to the increased computational cost.

2.1. Spatial discretisation

In the following it is assumed that the mesh on both the tyre and the road are regular and that they coincide
in such a way that a pair of elements that potentially makes contact is formed. The reason for making this
restriction is two-fold: (i) it is the way the contact algorithm is presently implemented and for which the results
are presented in Section 4 and (ii) it simplifies the presentation of the approach, which rather is about
including the interfacial layer than the discretisation of the bulks of the objects in contact. In general, non-
matching meshes may be used and techniques for this is treated in standard textbooks (e.g. Ref. [24] where the
interested reader may find further references). A pair of elements potentially in contact has an associated pair
of matching points. The matching point is located at the centre of each element and its height is given by the
outermost coordinate within each element. Having zero distance between the elements exactly when the first
contact is made is suitable in conjunction with the interfacial laws presented below.

2.2. Green’s functions

The displacement response of a linear dynamic system may be calculated by convolving the external forces
acting on the system with Green’s functions of the system. The Green function gðtÞ is generally the solution to

LgðtÞ ¼ dðtÞ, (3)

where L is a linear self-adjoint differential operator and dð�Þ the Dirac delta pulse. The unknown function uðtÞ,
which is a solution to

LuðtÞ ¼ F ðtÞ (4)

is then given by

uðtÞ ¼ F ðtÞ � gðtÞ ¼

Z
F ðtÞgðt� tÞdt. (5)

The function F ðtÞ describes in general an external excitation and in specific an external (contact) force for the
contact model presented. The right-hand side of Eq. (5) is called a convolution between F ðtÞ and gðtÞ. To be
strict, if there are boundary conditions then both gðtÞ and uðtÞ must fulfil them.

In the contact model, the Green function is used to describe the displacement of the matching point in one
element due to a pulse in time that is uniformly distributed in space over the same or an other element. In
other words, the Green function is the solution of the differential equation describing the dynamic response of
the tyre structure when the external excitation term is

dðtÞ
Am

½Hðx� x1Þ �Hðx� x2Þ�½ðHðy� y1Þ �Hðy� y2ÞÞ�, (6)

where Am ¼ ðx2 � x1Þðy2 � y1Þ is the area of the element and Hð�Þ the Heaviside step function. For simplicity,
it is assumed that the element is rectangular and oriented in the xy-plane so that its area is described by the
coordinates ðx; yÞ for x1pxpx2 and y1pypy2. Note that integrating Eq. (6) over space yields the Dirac delta
pulse. Hence, the displacement of the matching point can be found by convolving the total force acting on the
element with the calculated Green’s function. In the following all equations are formulated in terms of this
force instead of the underlying pressure distribution. Note that the Green function has unit m/N s.
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The main strength of a contact model with the convolution technique is that it requires a relatively low
computational cost. The Green functions can be calculated beforehand by any suitable tyre response model. It
is only the displacements of the outer boundary of the tyre that enter the equations to be solved; the
displacements within the tyre do not have to be considered. This approach has been applied to various contact
problems, e.g. the string/bow contact of a musical instrument [25], beam/rod contact modelling valves [26,27],
wheel/rail contact [28], and the tyre/road contact [13,19,17].
2.3. Contact formulation including nonlinear contact springs

The same convolution technique is used here to calculate the displacement field on the bodies in contact, but
the contact model is extended to include constitutive contact relations. The model is presented in a general way
by adding nonlinear springs between each pair of matching points. The relations between force and
displacement at the element can be modelled by choosing an appropriate stiffness function of the spring. The
model is first presented for a single pair of matching points for clarity and is later extended to multipoint
contact.

Consider two bodies with rough surfaces making contact in a single contact zone (Fig. 4). This zone can be
modelled with a pair of contact elements, with the position of each represented by a single matching point.
Fig. 5 shows the general idea of the modelling approach where a nonlinear spring is added between the pair of
matching points. The distance z1 gives the position of the matching point at the surface of body 1 when the
system is at rest, i.e. when no forces act on the body, and z2 is the corresponding position of the matching
point on body 2. The distance is given relative to a reference plane perpendicular to the direction of the
contact. The distances w1ðtÞ and w2ðtÞ are the displacements of the matching points of body 1 and body 2,
respectively, due to deformations of the bulk of the objects, but not including the small-scale deformation
within the element. The distance between the two matching points is dðtÞ and, hence, negative dðtÞ means that
the surfaces are indenting each other on smaller length-scales. The compression of the spring, zðtÞ, is given by
Fig. 4. Two bodies with rough surfaces in contact.

Fig. 5. Geometry and modelling approach of the problem.
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the negative separation distance:

zðtÞ ¼ �dðtÞ ¼ �z2 � w2ðtÞ þ z1ðtÞ þ w1ðtÞ. (7)

Hence, the compression increases when the indentation is increasing.
The displacement of the matching point on body 2, w2ðtÞ, is calculated by convolving the contact force, F ðtÞ,

with the displacement Green’s function of the system, gðtÞ,

w2ðtÞ ¼ F ðtÞ � gðtÞ, (8)

just as discussed above. The same kind of relation holds generally for body 1, but in the following this body
will be regarded as rigid, i.e. having infinite impedance, for simplicity. The reason is also that this is a clever
assumption when modelling the response of the road surface as discussed below. In this case the displacement
of the matching point due to deformation is zero,

w1ðtÞ ¼ 0. (9)

The constitutive relation between the force F ðtÞ and the compression of the spring zðtÞ is generally described by
a function f ð�Þ,

F ðtÞ ¼ f ðzðtÞÞ, (10)

as discussed above. This function may include nonlinearities due to the surface roughness and allow for
negative forces due to adhesion forces over the interface. Returning to the model of a spring with nonlinear
stiffness, the stiffness is given by the derivative of the function,

kðzðtÞÞ ¼
df ðzðtÞÞ
dzðtÞ

. (11)

The relation between the spring compression and the force may be formulated by using this spring stiffness
according to

F ðtÞ ¼

Z zðtÞ

�1

kðxÞdx. (12)

If no asperities are making contact when the surfaces are separated by more than a given distance d0, and
hence the spring force is zero, then the lower integration limit can be set to z0 ¼ �d0. To summarise, Eqs.
(7)–(9) and (12) are the governing equations of the problem. The formulation is similar to the standard penalty
method but with a nonlinear penalty function, if one regards the spring as the penalty function.

2.4. Time discretisation of the contact problem

The system described by Eqs. (7)–(9) and (12) can generally not be solved analytically, and numerical methods
must be employed. Time discretisation is made by low-pass filtering and resampling the signals with a given
sampling frequency f s (constant time step Dt ¼ 1=f s). Note that the notations gð1Þ, gðNÞ, gðN � nÞ, etc. used in
the following does not mean the continuous function gðtÞ evaluated at time 1, N, or N � n. It means the function
gðtÞ low-pass filtered and its 1st, Nth, or ðN � nÞth sample. This holds for all the functions below except kðxÞ.

Eq. (8) yields for time step N

w2ðNÞ ¼ F ðNÞgð1ÞDtþ wold
2 ðNÞ, (13)

where the convolution integral is taken over sampled signals, and

wold
2 ðNÞ ¼

XN�1
n¼1

F ðnÞgðN � nþ 1ÞDt (14)

is the displacement of the matching point due to forces acting at previous times. Thus, this part is already
evaluated in the previous time step. Eq. (12) gives

F ðNÞ ¼

Z zðNÞ

�1

kðxÞdx ¼ F ðN � 1Þ þ

Z zðNÞ

zðN�1Þ
kðxÞdx, (15)
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where F ðN � 1Þ is the force and zðN � 1Þ the compression of the spring in the previous time step, which are
known at the present time step. The geometrical condition is written as

zðNÞ ¼ �dðNÞ ¼ �z2 � w2ðNÞ þ z1, (16)

when w1ðnÞ is assumed to be zero for all N.
This is a nonlinear equation system when kð�Þ is non-constant. The Newton–Raphson method is applied to

solve the system. The equations are combined and written on the form f ðxÞ ¼ 0 where f ð�Þ is a function given
by the equation system combined to a single equation and x the unknown argument. The solution is found by
using the iterative scheme,

xaþ1 ¼ xa �
f ðxaÞ

f 0ðxaÞ
. (17)

Eqs. (16) and (13) yield

f ðzðNÞÞ ¼ zðNÞ þ z2 þ w2ðNÞ � z1 ¼ 0, (18)

f ðzðNÞÞ ¼ zðNÞ þ F ðNÞgð1ÞDtþ wold
2 ðNÞ þ z1 � z2 ¼ 0. (19)

Eq. (15) is finally used to yield

f ðzðNÞÞ ¼ zðNÞ þ F ðN � 1Þ þ

Z zðNÞ

zðN�1Þ
kðxÞdx

� �
gð1ÞDtþ wold

2 ðNÞ þ z1 � z2 ¼ 0, (20)

where zðNÞ is the unknown variable. The derivative of f ðzðNÞÞ is

df ðzðNÞÞ
dzðNÞ

¼ 1þ kðzðNÞÞgð1ÞDt. (21)

Hence, the iterative scheme of the Newton–Raphson method reads

zaþ1ðNÞ ¼ zaðNÞ �
f ðzaðNÞÞ

1þ kðzaðNÞ
(22)

with f ðzaðNÞÞ given by Eq. (20).

2.5. Multiple contact elements

There are in general multiple pairs of contact elements and an equation system that describes the contact
problem. The Newton–Raphson method for a system with M equations and M unknowns is employed. The
equations are rewritten in the form

f eðx1; . . . ; xMÞ ¼ 0 for e ¼ 1; . . . ;M (23)

or with compact notation as

fðxÞ ¼ 0. (24)

The iteration xa! xaþ1 is made by solving the linear system

MðxaÞðxaþ1 � xaÞ þ fðxaÞ ¼ 0, (25)

where MðxÞ ¼ ðqf e=qxmÞ is the functional matrix.
The contact problem described above is extended to multiple pairs of contact elements. The

displacement response of the matching point w2;eðtÞ at contact element e due to the force FmðtÞ at element
m is given by

w2;e ¼
XM
m¼1

FmðtÞ � gm;eðtÞ for e ¼ 1; . . . ;M, (26)
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where gm;eðtÞ is the Green function. The spring force at element m is given by

FmðtÞ ¼

Z zmðtÞ

�1

kmðxÞdx (27)

and the geometrical condition at the same element is

zmðtÞ ¼ �z2;m � w2;mðtÞ þ z1;m. (28)

Time discretisation, using the same notation as for the single equation case, yields

w2;eðNÞ ¼
XM
m¼1

FmðNÞgm;eð1ÞDtþ wold
2;e ðNÞ, (29)

F mðNÞ ¼ F mðN � 1Þ þ

Z zmðNÞ

zmðN�1Þ

kmðxÞdx, (30)

zeðNÞ ¼ �z2;e � w2;eðNÞ þ z1;e. (31)

These equations are combined into functions of the form f eðz1ðNÞ; z2ðNÞ; . . . ; zM ðNÞÞ ¼ 0,

f eðz1ðNÞ; z2ðNÞ; . . . ; zM ðNÞÞ ¼ zeðNÞ þ
XM
m¼1

FmðN � 1Þ þ

Z zmðNÞ

zmðN�1Þ

kmðxÞdx

� �
ge;mð1ÞDt

þ wold
2;e ðNÞ þ z2;e � z1;e ¼ 0. (32)

The corresponding derivatives in the functional matrix are given by

qf eðz1ðNÞ; z2ðNÞ; . . . ; zMðNÞÞ

qzmðNÞ
¼ de;m þ kmðzmðNÞÞge;mð1ÞDt, (33)

where

de;m ¼
1 if e ¼ m

0 if eam:

(

The equations describe a general way of incorporating nonlinear stiffness between the matching points. The
functions kmð�Þmust be given in order to solve the system. Note that all elements on body 2 are coupled via the
first value of the Green function in Eq. (29), but the constitutive relation at element m, described by Eq. (30), is
independent of the compressions of the springs at adjacent elements.

2.6. Method for estimating the nonlinear stiffness functions

The stiffness functions of the nonlinear springs within each pair of contact elements, arising from the
smallest length-scales, are determined from detailed scans of the surface geometry, elastic data of the tread,
and a model of a flat circular punch indenting an elastic layer. The approach gives an estimation of a stiffness
function that is unique for each pair of contact elements. The very smallest length-scales are still neglected due
to the finite resolution of the measurement device when scanning the surface, but including length-scales down
to micrometres is definitely a step in the right direction.

There are two fundamental properties that the stiffness functions must have: The interfacial stiffness (i)
should start from zero when the first contact is made and be monotonically increasing for increased load/
indentation and (ii) should be infinite when complete saturation occurs. The latter case means that the surfaces
of the bulks of the interacting objects have direct contact all over the interface and thus the deformation only
occurs in the bulks.

A model of a rigid and flat circular punch indenting an elastic layer is used as an approximation to estimate
the interfacial stiffness. This is a standard contact problem for which relations between contact pressure, total
force, and indentation are available in literature (e.g. Ref. [29]). Assuming that the indentation is made with a
flat circular punch will give an overestimation of the stiffness for cases where in reality several disjoint patches
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are present to transfer the force. A more detailed model that considers coordinates that forms separated
patches can be used and is a natural path for future refinement of the model if needed.

The actual contact geometry has to be translated to a radius of the punch and a thickness of the elastic layer.
The roughness is assumed to yield a thin interfacial layer determined by the difference between maximum and
minimum height, zmax and zmin, of the road surface within the element under consideration. For each element,
the area of contact is estimated by considering the area of heights above a given indentation (compression of
the spring) z,

AðzÞ ¼
X

i

Hðzi � ðzmax � zÞÞdA, (34)

where Hð�Þ is the Heaviside step function and dA the area associated with each surface point (Fig. 6). The
estimated area of real contact is used to calculate the equivalent radius of the circular punch

reqðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðzÞ=p

p
. (35)

The layer thickness is assumed to depend on the indentation z as

hðzÞ ¼ ðzmax � zÞ � zmin, (36)

where zmin is the lowest height within the present contact element. This choice of layer thickness assures that
the interfacial contact stiffness becomes infinite for complete saturation (which in practice never occurs). The
relations for the flat circular punch of radius reqðzÞ indenting an elastic layer of thickness hðzÞ is used to
numerically determine the stiffness functions. In practice it is convenient to describe the final stiffness function
by a polynomial approximation where a polynomial order of ten have been found suitable. Fig. 7 shows the
typical character of the stiffness functions for five different pairs of elements. Note that the stiffness is very
close to the stiffness of the elastic half-space approximation at low compressions, where the contact area is
small in comparison to the layer thickness. As the compressions increases the effect of the finite layer thickness
starts to be more pronounced.

2.7. Discussion about existence and uniqueness

Existence and uniqueness of the solution of the formulated contact problems have not been addressed
above. The approximate solution of the Newton–Raphson method converges quadratically to the global
minimum if the starting estimate is close enough to the solution. There is a general requirement of the
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Fig. 6. The detailed surface profile record zi and the maximum and minimum heights zmax and zmin, the indentation z and the layer

thickness hðzÞ.
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functions to be regular for convergence, i.e. they should be analytical and differentiable. The requirement of
differentiability is clearly seen as the functional matrix used in the iteration contains the derivatives of the
functions. Convergence to a unique solution is expected when the stiffness functions are regular and
monotonically increasing for increased compression of the spring. However, if adhesion forces are modelled,
which has two compressions giving the same force, then the solution is non-unique. Choosing sufficiently
small time steps, and a linearisation from the previous contact state as a starting point, generally yields
convergence to the solution closest to the previous one.

Note that also contact models including stick-slip motion by using the friction law of Coulomb have
generally been loosely founded with respect to convergence; the problems are known to exhibit features such
as non-uniqueness and even non-existence. Trial-and-error approaches have been applied, where models
giving the expected results have been judged useful. Some effort has been spent on convergence, which can be
proven if the friction law is regularised. The problem has also been put in the framework of mathematical
programming theory, and convergence have been proved for less strict requirements of differentiability on the
functions [30].
3. Simulations

Simulations using the contact model presented above are made for a single tread block in contact with a
road surface. The contact is made at various positions of the road sample to investigate the spatial variations
of the contact stiffness. The set of Green’s functions for the tread is modelled using a numerical model solving
the elastic field equations in the frequency/wavenumber domain. It is the model presented in Refs. [7,31] but
with boundary conditions for a 1 cm thick tread layer with a rigid backing. The model gives frequency
response functions that are transformed to the time domain (by using the technique presented in Ref. [32] to
assure causality and the correct static deformation, and to reduce ripples due to the Gibbs phenomenon). The
Young modulus of the tread has a real part of 25MPa at 0Hz that increases with frequency up to 50MPa. The
imaginary part starts from 0MPa at 0Hz and increases with frequency up to 25MPa at the highest frequencies
considered. The resulting Green functions are 256 samples long with a sampling frequency of 51.2 kHz.

The road surface is a scan of a wearing course built according to the standard ISO-10844 [33], which is a test
track specification commonly used as a reference case for tyre/road interaction. The smaller length-scales are
given in a regular grid with a resolution of 38mm. The road surface is assumed to have infinite mechanical
impedance and the road geometry is simply included in the contact problem through a geometrical boundary
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condition, i.e. the road is assumed to be rigid. This is a most common simplification in models of tyre/road
contact and is justified in most cases by the large difference in mechanical impedance between the road and
tyre structures. It is however not valid for roads with relatively low mechanical impedance, such as roads with
specially designed poroelastic wearing courses.

The contact is made over an apparent area of 2 cm � 2 cm and the contact area is divided into 20 � 20
elements as the standard case. The same sampling frequency as is used for the Green functions, i.e. 51.2 kHz, is
used in the contact algorithm. The loading is chosen to simulate a (quasi-)static case with a prescribed
indentation where the distance z2 � z1 is decreased in steps of 0:01 mm. The number of time steps used in each
indentation step is more than the number of samples of the Green functions to get the static result. The contact
problem is in practice solved by using an outer loop with an active set strategy, i.e. an algorithm that in each
time step identifies the elements that actually makes contact so that only these elements needs to be considered
in the contact problem to be solved. This decreases the computational cost substantially as only part of the
pairs of elements actually makes contact for the considered loads.

4. Results and discussion

Selected results from the simulations are presented in the following to highlight the performance of the
contact model and to show typical results for a tread block in contact with a road surface.

4.1. Performance of the model

The presented contact modelling including the small-scale roughness gives a considerable smoother and
softer contact for a tread block than a standard formulation with Lagrange multipliers (Fig. 8). The standard
formulation brutally states either no contact or full contact at each pair of contact elements as shown in Fig.
3a. The difference is also seen as the number of active matching points is increased and the forces decreases
compared to the standard formulation. It is clear that the presented formulation shows the softer contact
stiffness and the smooth relation between indentation and contact stiffness that follow from fundamentals of
contact between objects with rough surfaces and the concept of area of real contact.

Fig. 9 shows the contact stiffness as a function of force for different chosen discretisations corresponding to
elements of size 1mm� 1mm, 1:1111mm � 1:1111mm, 1:25mm� 1:25mm, 1:4286mm� 1:4286mm,
1:667mm� 1:667mm, and 2mm� 2mm for one single contact position. Different sizes of the element
means that different amount of the geometry is included in the spatial discretisation and in the nonlinear
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Fig. 8. Contact stiffness as a function of indentation for a tread block in contact with a road surface. Formulation with (thin line)

Lagrange multipliers and (thick line) the presented model.



ARTICLE IN PRESS

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Force [N]

C
on

ta
ct

 S
tif

fn
es

s 
[M

N
/m

]

Fig. 9. Contact stiffness as a function of force for discretisation in 20� 20 (thick solid line) , 18� 18 (thick dashed line), 16� 16 (thick
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Fig. 10. Force as a function of indentation depth for four different positions on the same wearing course. Position A (solid line), B (dashed
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contact springs, respectively. It is obvious that the model is rather robust with respect to the chosen
discretisation for the presented cases; the difference in contact stiffness at 100N load is less than 5%.
However, the differences in the calculated results starts to be significant when a spatial discretisation with
elements larger than 2mm� 2mm is used. This is obviously the length-scale where the effect of disjoint
patches within the elements starts to be significant. Using a model for the spring stiffnesses that considers the
individual patches within each element may be a solution to close this discrepancy.

4.2. Contact stiffness in tyre/road contact

Fig. 10 shows the force–indentation relation for four different positions on the road surface. As expected,
there is clearly a nonlinear relation between the total force over the interface and the indentation of the tread
into the wearing course. Fig. 11 shows that the corresponding contact stiffness is lower when the first contact is
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Fig. 11. Contact stiffness as a function of indentation depth for four different positions on the same wearing course. Position A (solid

line), B (dashed line), C (dash-dotted line), and D (dotted line).
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Fig. 12. Contact stiffness as a function of force for four different positions on the same wearing course. Position (solid line) A, (dashed

line) B, (dash-dotted line) C, and (dotted line) D.
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made and increases as more and more junctions make contact. The contact stiffness varies substantially
between the different positions indicating that the spatial variations in the contact geometry are important to
consider. The contact stiffness for the case of a perfectly flat contact geometry giving direct contact of the
bulks all over the surface would be above 4MN/m, which is substantially above the one when considering the
smaller length-scales in the geometry as the real contact geometry causes only a partial contact. Further, the
calculated relations show the same characteristics as the experimental results presented by Kröger and Gäbel
[34]. Their measured stiffness is in the order of 10 times lower, but both a different tread and a different road
surface was used.

The static load on a tyre is in the order of 4 kN and numerical simulation shows that the dynamic pressure
varies �10% around the static one [17]. A typical contact patch has dimension of 10 cm� 15 cm yielding an
average contact pressure of about 300 kPa. Thus the expected force transferred over patch of 2 cm� 2 cm is on
the order of 120N. Fig. 12 shows that the contact stiffness for a block of these dimensions are 1.5–2.5MN/m
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for the expected maximum pressure. However, at the leading edge the load starts from zero and increases as
the block enters the contact zone. Thus, the contact stiffness varies substantially not only between different
contact geometries but also during the run through the contact.

Using detailed scans of the actual surface geometry is manageable in fundamental studies as the one presented
here. However, when studying the complete tyre with multiple revolutions it is not likely that the detailed surface
scans would be available over more than an area of the order of 10 cm� 10 cm, i.e. for a single footprint. However
it is important to consider both the actual contact stiffness and resulting pressure distribution that clearly vary with
position and load, especially when modelling friction forces (stick-slip processes) and adhesion forces (stick-snap
processes). It rises the interesting question whether it is applicable to work with simplified stiffness functions or not.
Could a stiffness function for each element that is randomly chosen from a smaller set of stiffness functions be used
for calculations over several revolutions? The stiffness functions would be pre-calculated for the actual tyre and
road under consideration. Or would even a single average stiffness function be applicable? The performance of the
tyre/road interaction models based on a Winkler bedding or an elastic half-space (that assumes constant stiffness)
used today definitely indicates that simplifications should be applicable when studying the complete rolling tyre on
relatively rough surfaces. However, these models definitely fail for smooth tyres on relatively smooth low
roughness roads, but future studies in line with the presented may reveal to what degree a more detailed description
of the real contact stiffness is needed.

5. Conclusions

The presented contact model is a step towards including more of the interfacial details in the tyre/road
contact. The model was demonstrated for normal (out-of-plane) contact only, but it is straightforward to
extend the formulation to include also tangential (in-plane) contact using a friction law (which has been
implemented by the research group [35]). It is concluded that the model captures more of the actual behaviour
at the interface by including also the effect of the smaller length-scales within the elements of the spatial
discretisation.

The validity of the presented model has only been indirectly demonstrated. Detailed experimental data for a
specific tyre/road combination that include all the necessary components is missing. In fact, validation is
generally problematic when including smaller length-scales in view of the advanced experimental devices
needed but is planned future work. However, the presented modelling approach is based on previous theories
for rough surfaces and natural physical relations, and the results show the characteristic relations following
from fundamentals of elastic objects with rough surfaces in contact. The model also follows the characteristics
of measured stiffness–indentation relations found in literature (missing details of road geometry and tyre tread
material properties). Thus, the presented approach to include smaller length-scales has been validated, while
future comparisons to experimental results for specific tyre/road combinations may reveal that more (or less)
details need to be included in the estimation of the interfacial laws for each pair of contact elements.

The numerical results showed that the effect of the small-scale roughness is substantial. The actual contact
stiffness for a block varies between zero and about half of that one given by full contact to the bulk. The
presented relations between indentation and force for a single tread block is a suitable input for a global tyre/
road interaction model, i.e. a model that includes the complete rotating tyre. The same contact formulation as
presented here would be applicable and is planned for future work.
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[34] G. Gäbel, M. Kröger, Non-linear contact stiffness in tyre-road interaction, Paper 118, The Sixth European Conference on Noise

Control (EURONOISE2006), Tampere, Finland, 2006.

[35] P. Sabiniarz, W. Kropp, A model to evaluate the importance of tangential contact forces for tyre/road noise generation, Acoustics’08,

Paris, France, 2008.


	Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness
	Introduction
	Tyre/road interaction
	Tyre/road interaction models
	Discretisation of contact geometry
	Nonlinear constitutive contact relations

	Contact model
	Spatial discretisation
	Green’s functions
	Contact formulation including nonlinear contact springs
	Time discretisation of the contact problem
	Multiple contact elements
	Method for estimating the nonlinear stiffness functions
	Discussion about existence and uniqueness

	Simulations
	Results and discussion
	Performance of the model
	Contact stiffness in tyre/road contact

	Conclusions
	Acknowledgements
	References


